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ABSTRACT 

Production scheduling may be defined as the allocation of avail- 

able production resources over time to best satisfy some set of criteria. 

Typically, the scheduling problem involves a set of tasks to be performed, 

and the criteria involve tradeoffs between early and late completion 

of a task, and/or between holding inventory for the task and frequent 

production changeovers.  The intent of this paper is to present a broad 

classification for various scheduling problems, to review important 

theoretical developments for these problem classes, and to contrast the 

currently available theory with the practice of production scheduling. 

This paper will highlight problem areas both for which there is a sig- 

nificant discrepancy between practice and theory, and for which the 

practice corresponds closely to the theory. 
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1.  Introduction 

Production scheduling may be defined as the allocation of available 

production resources over time to best satisfy some set of criteria. 

Typically, the scheduling problem involves a set of tasks or requirements 

to be performed, where the criteria might involve tradeoffs between 

early and late completion of a task, and/or between building inventory for 

an item and frequent production changeovers.  The intent of this paper is 

to present a broad classification for various scheduling problems, to 

review important theoretical developments for these problem areas, and 

to contrast the currently available theory with the current practice of 

production scheduling. 

One way to introduce and summarize the contents and scope of this 

paper is to indicate what the paper has not tried to accomplish.  First, 

we have no intentions of giving an exhaustive survey of the literature 

in production scheduling.  To do so would not only be presumptuous, but 

also potentially repetitive of previous survey and review papers such as 

Moore and Wilson [99], Elmaghraby [37], Bakshi and Arora [10], Day and 

Hottenstein [29], Panwalker and Iskander [106], Salvador [114], Godin [55], 

and Eilon [34].  Extensive bibliographies are also available from the 

books by Muth and Thompson [101], Conway, Maxwell, and Miller [25], Eilon 

and King [35], Elmaghraby [38], Baker [5 ], Lenstra [82], Rinnooy Kan [110], 

and Coffman [23].  Rather, the paper attempts only to highlight the 

status of current research on classical production scheduling problems. 

The emphasis of the paper is more on establishing a current perspective on 

the status of scheduling research relative to scheduling practice. 

Second, the paper largely ignores the recent work in complexity theory 

for scheduling algorithms and problems.  We felt that a proper treatment 



of this material would detract from the primary focus of the paper, that 

being the status of current theory versus practice. Again, excellent 

bibliographies for this material can be found in Coffman [23], and Garey, 

Graham, and Johnson [47] . 

Third we have limited this paper to a fairly restrictive definition 

of production scheduling so as to minimize the overlap with the review 

papers on Inventory management by Silver [122] and on production planning 

by Hax and Meal [64].  We distinguish production scheduling from inventory 

management based on assumptions for the production resources; the alloca- 

tion decisions for the production resources are the primary focus of the 

production scheduling problem, whereas these decisions are made exogenously 

in the inventory management context.  We distinguish production scheduling 

from production planning based again on the assumptions for the production 

resources; the determination of the production resource level is exogenous 

to the production scheduling problem, but is a primary decision in the 

production planning process. 

The remainder of the paper is organized into four sections.  In the 

next section a classification scheme is given.  Section 3 reviews the 

status of production scheduling theory according to the classification 

previously given.  Section 4 presents some observations on the practice 

of production scheduling, while the last section suggests some directions 

for future research based on these observations. 
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2.  Problem Classification 

Numerous schemes have been proposed for categorizing production sche- 

duling problems.  The intent of any classification is to provide r semblance 

of organization so that the maior differentiating dimensions of the problem 

classes are identified.  For our purposes we desire a broad classification 

which allows us to encompass the general characteristics of both scheduling 

theory and scheduling practice.  With this in mind, we propose the follow- 

ing three dimensions for classifying production scheduling problems: 

1) requirements generation 

2) processing complexity 

3) scheduling criteria. 

These dimensions, as will be seen, are Imperfect; the dimensions are not 

independent, they do not guarantee a unique representation for any problem 

setting, and they may be ambiguous at times.  However we hope to show 

that they are adequate for structuring our discussions and for aiding 

comparisons across problems. 

The first dimension, requirements generation, is a key distinction. 

Requirements may be generated either by open orders or by inventory replenish- 

ment decisions.  This distinction is often made in terms of an open shop 

versus a closed shop.  In an open shop all production orders are by 

customer request, and no inventory is stocked; in a closed shop all customer 

requests are serviced from inventory, and the production tasks are in general a 

result of the inventory replenishment decisions. The production scheduling 

problem is quite different depending on the requirements generation. 

For the open shop, production scheduling in its simplest form is a 

sequencing problem in which the open orders are to be sequenced at each 

facility.  For the closed shop, production scheduling must be involved not 

only in the sequencing decisions, but also in the lot-sizing decisions 
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associated with the inventory replenishment process.  Although a pure 

open or a pure closed shop is rare, most production environments are 

primarily either open or closed.  For this review we focus on 

this distinction; furthermore we assume that the decision as to whether 

a shop is open or closed has been made. 

The second dimension, processing complexity, is concerned both with 

the number of processing steps associated with each production task or item, 

and with the existence of alternative routings for a particular task.  A 

common breakdown for this dimension is as follows: 

- one stage, one processor (facility) 

- one stage, parallel processors (facilities) 

- multistage, flow shop 

- multistage, job shop. 

The one stage, one processor problem, which is also termed the one machine 

problem, is the simplest problem form; here all tasks require one processing 

step which must be done on the one production facility.  The one stage, 

parallel processor problem is similar to the one machine problem except 

that now each task requires a single processing step which may be performed 

on any of the parallel processors.  For the multistage 

problem, each task requires processing at a set of distinct facilities, 

where typically there is a strict precedence ordering of the processing 

steps for a particular task.  The flow shop problem assumes that all tasks 

are to be processed on the same set of facilities with an identical prece- 

dence ordering of the processing steps. The job shop problem is the most 

general production scheduling problem in the classification; here there 

are no restrictions on the processing steps for a task, and alternative 

routings for a task may be allowed.  The above breakdown for processing 
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complexity, although by no means exhaustive of all possibilities, seems 

to be fairly representative for most production environments.  This may 

be due to the vast generality of the multistage, job shop category; never- 

theless, the simpler categories are of importance in that many shops which 

are limited by a bottleneck department or a bottleneck line may be viewed 

as a one stage problem or as a flow shop.  Furthermore, theoretical insight 

from these simpler problems is often the first step in tackling the more 

complex problems. 

The third dimension, scheduling criteria, indicates the measures upon 

which schedules are to be evaluated.  Two broad classes of criteria are 

schedule cost and schedule performance.  The cost associated with a parti- 

cular schedule includes the fixed costs associated with production setups 

or changeovers, variable production and overtime costs, inventory holding costs, 

shortage costs for not meeting deadlines or for stocking out, and possibly 

expediting costs for implementing the schedule in a dynamic environment. 

The system costs for generating the schedule and for monitoring the 

progress of the schedule also need to be included in the schedule costs. 

The performance of the schedule may be measured in many ways.  Common 

measures are the utilization level of the production resources, the 

percentage of late tasks, the average or maximum tardiness for a set of 

tasks, and the average or maximum flow time for a set of tasks.   In addi- 

tion, for a closed shop, service criteria, such as the percentage of demand 

filled from stock, may be used for evaluating a production schedule.  In 

most production environments, the schedule evaluation is based on a mixture 

of both cost and performance criteria; however, as will be seen, most of 

Tardiness is the positive part of the difference between a task's actual 
completion time and its desired completion time.  The flow time for a 
task is the difference between the completion time of the task and the 
time at which the task was released to the production shop. 
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the theoretical literature on production scheduling addresses single 

criterion problems.  Indeed, the literature for open shops deals primarily 

with schedule performance criteria, whereas the closed shop literature 

is concerned with a minimum cost criterion. 

Two other dimensions which might have been included here are the 

nature of the requirement specification and the scheduling environment. 

Depending upon how the requirements are generated, the specification of 

the requirements may be termed deterministic or stochastic.  For instance, 

for an open shop, the processing time for each step of the task may be 

known, or may be a random variable with specified probability distribution. 

Similarly, for a closed shop, the customer demand process, which drives 

the inventory replenishment decisions, may be assumed to be stochastic 

or deterministic.  The scheduling environment deals with the assumptions 

on the availability of information on future requirements. A common 

distinction is made between a static and dynamic environment.  In a static 

environment, the scheduling problem is defined with respect to a finite 

set of fully-specified requirements; no additional requirements will be 

added to this set, nor will any of the specifications be altered.  As a 

contrast in a dynamic environment, the scheduling problem Is defined not 

only for the known requirements, but also with respect to the anticipations 

for additional requirements and specifications generated over the future 

time periods.  Both the nature of the requirements specification and 

the scheduling horizon are primarily model considerations, as opposed to 

problem characteristics.  For most production environments the scheduling 

problem is stochastic and dynamic; most models for scheduling problems, 

however, are inherently deterministic and static. Most scheduling 

systems are implemented as if the production environment were deterministic 
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and static over a specified finite horizon.  Our review of production 

scheduling theory and practice will focus almost entirely on results from 

deterministic and static models for production scheduling problems.  Hence 

we do not formally include these distinctions in this problem classifica- 

tion, but do acknowledge the importance of these distinctions for 

characterizing models. 



3.  Review of Production Scheduling Theory 

This section gives an overview of major work in production scheduling 

theory.  The organization of this section follows the classification scheme 

presented in the previous section.  We reemphasize that the primary focus 

of the review is on reported work for the deterministic, static problems. 

3.1 Open Shop Problem 

The open shop scheduling problem, also called the job shop scheduling 

problem, may be broadly defined as having to sequence a family of processors 

so as to complete a given set of tasks and optimize some performance measure. 

These problems are all combinatorial problems of varying difficulty, and 

they may all be solved, in theory, by an enumeration strategy such as a 

branch and bound procedure.   As we will see, however, these problems range 

quickly from the trivial to the impossible. 

One Stage, One Processor 

The one stage, one processor problem, or one machine problem, has been 

the most popular of all scheduling problems.  A wide variety of results 

exist for a vast set of problem specifications.  The best known of these 

results are the procedures for minimizing the mean flow time (Smith [127]) 

and for minimizing the maximum tardiness ( Jackson [71]); both of these 

procedures determine the optimal task sequence by means of a simple order- 

ing of the tasks.  A slightly more complex procedure is that of Moore [98] 

for minimizing the number of late tasks; here the tasks are first ordered 

according to their desired completion time, and then this sequence is modi- 

fied by the sequential removal of late tasks. 

While the above-mentioned problems have proved to be quite easy, the 

problem of minimizing weighted tardiness has been considerably more diffi- 
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cult.  Indeed this problem has been shown to be NP-complete by Karp [75]. 

Lawler [81], Eiranons [40], Schwimer [121] , Fisher [43], Srinivasan [128], 

Rinnooy Kan, et al [111], Picard and Queyranne [108], and Baker and Schrage 

[ 9 ], to mention a few, have all studied the one-machine tardiness problem 

or a generalization of it.  The recent work of Schrage and Baker [116] 

seems to have substantially tamed this problem.  They formulate the problem 

as a general dynamic program; they then perform the recursive compu- 

tations very efficiently by exploiting the dominance properties introduced 

by Eiranons [40], and by an ingenious implementation of the algorithm.  They 

report solving both 50-task tardiness problems and 20-task weighted tardi- 

ness problems in less than one second of cpu time on an IBM 370/168. 

One Stage, Parallel Processors 

The one stage, parallel processor problem is an important generaliza- 

tion of the one-machine problem; whereas the one-machine problem is primarily 

of theoretical interest, the one stage, parallel processor scheduling 

problem occurs in many settings such as continuous processing plants for 

the glass and chemical industries, and computer installations.  Unfortu- 

nately, very few of the simple results and algorithms for the one-machine 

case can be carried over to the parallel processor problem.  Most of 

the results obtained assume that the processors are identical.  A distinc- 

tion is also made for problems with preemptive versus nonpreemptive tasks. 

The most common criteria studied for the problem are weighted flowtime, 

maximum flowtime (or makespan), and weighted tardiness. 

A task is said to be preemptive if the processing of the task may be 
split either on a single processor or across several processors. 
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For the weighted flowtime criterion, McNaughton [95] shows that 

an optimal schedule exists in which no tasks are preempted or split; hence 

the  distinction is not important for this criterion.  To minimize mean 

flowtime on identical processors, a simple sorting procedure, analogous 

to the shortest processing time procedure for the one-machine case, is 

optimal [95].  When the processors are not identical, Horn [68] shows 

how to solve the mean flowtime problem as a transportation problem.  Unlike 

the one-machine problem, here the weighted flowtime problem is considerably 

harder than the mean flowtime problem.  Eastman, et al [33] give a lower 

bound for the weighted flowtime criterion, Rothkopf [113] formulates the 

problem as a very general dynamic program, and Baker and Merten [ 7 ] 

propose and test several heuristics for this problem. 

McNaughton [95] gives a very simple solution for minimizing the 

maximum flowtime when the processors are identical and preemption is allowed. 

Special cases for the maximum flowtime criterion have also been solved 

assuming that the processors are identical and all tasks have the same 

processing times.  Hu [69] gives a list scheduling procedure for the 

nonpreemptive case where the precedence relationships for the tasks 

form an assembly tree structure.  Coffman and Graham [24] present a similar 

solution procedure for the nonpreemptive case with general precedence rela- 

tions and two identical processors.  Both of these procedures can be extended 

to allow general processing times for preemptive tasks. 

No simple results seem to exist for minimizing weighted tardiness. 

Optimal search algorithms for special cases have been given by Root [112], 

Elmaghraby and Park [39], Barnes and Brennan [12], and Nunnikhoven and 

Emmons [104]. Lawler [81] considers the identical processor problem where 

all tasks have the same processing time, and shows how to formulate this 

problem as a transportation problem; indeed, for this special case any 
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criterion that is dependent on completion time may be modeled as such. 

An interesting analogy exists between the one stage, parallel processor 

problem and the vehicle routing problem (e.g. Clarke and Wright [22]). 

With a criterion of minimizing changeover cost (or time) where a task's 

changeover cost may be sequence dependent, the scheduling problem with 

m identical processors is equivalent to a vehicle routing problem with m 

identical vehicles in which total travel distance is to be minimized. 

Here, the tasks correspond to the cities to be visited in the vehicle 

routing problem.  Parker, et al [107] have used this equivalence for finding 

heuristics for this parallel processor problem. 

Flow Shop 

The flow shop problem is the simplest multistage scheduling problem; 

unfortunately, as we will see, it has proven to be quite formidable. 

The problem is to determine how to sequence the set of tasks on each 

processor, where the processors are arranged in series and each task must 

visit each processor in the prescribed order.  A common assumption made 

by most researchers is to restrict attention to schedules for which the 

sequence of tasks is Identical on each processor.  Such schedules are 

called permutation schedules, and have been shown to be optimal for all 

2-processor problems, and for the 3-processor problem with a maximum 

flowtime criterion; however, in general, permutation schedules need not 

be optimal. Most of the reported work has also been limited to considering 

the maximum flowtime criterion, with nonpreemptive schedules. 

The best known result for flow shop scheduling is that of Johnson [74] 

for the 2-processor problem. He presents a simple list scheduling proce- 

dure for this problem for minimizing the maximum flow time.  The simplicity 

of this procedure has enticed others to spend countless hours seeking an 
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analogous procedure for the 3-processor problem, without success. Indeed, 

this problem has been shown to be NP-complete for nonpreemptive schedules 

by Garey, et al [48] and for preemptive schedules by Gonzalez and Sahni [56]. 

Numerous combinatorial optimization procedures have been proposed for 

solving the general flow shop problem with the maximum flow time criterion 

(e.g. Ashour [l], Gupta [63], Ignall and Schrage [70], Lomnicki [84], 

McMahon and Burton [93], Smith and Dudek [126], and Szwarc [132]). The most 

successful approaches seem to be branch and bound procedures which use both 

bounds and "elimination" methods for eliminating dominated sequences. 

Both Baker [ 3] and Lageweg, et al [77] have performed comparative compu- 

tational studies of the relative efficacy of the various bounding and elimina- 

tion strategies.  The most recent of these studies [77] finds that a bound 

based on Johnson's 2-processor procedure, combined with an elimination 

criterion of Szwarc [132] gave the best performance over a wide range of 

test problems.  Using this procedure, Lageweg, et al [77] were able to 

solve more than half of their test problems, each with twenty tasks to be 

scheduled on three processors, in less than 0.4 seconds of cpu time per 

problem on a Control Data Cyber 73-28. However, when the number of processors 

was increased to five, their procedure was unable to solve half of the test 

problems within the one minute of cpu time allowed per problem. 

Paralleling the work on optimal procedures for the flow shop problem 

has been work on heuristic procedures. Noteworthy heuristics for the maxi- 

mum flow time criterion are those of Campbell, et al [19] and Dannenbring 

[28].  The heuristic of Campbell, et al [19] uses Johnson's procedure to 

solve a series of 2-processor approximations to the actual problem with m 

processors.  The heuristic then chooses the best schedule from these approxi- 

mations.  Dannenbring [28] also uses Johnson's procedure to solve a 
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2-processor approximation to the actual problem; the generated task sequence 

is then improved as much as possible by considering switching adjacent tasks 

in the sequence.  In an extensive evaluation of a wide set of heuristics, 

Dannenbring [28] found that his heuristic performed the best on average; 

on a sample set of small problems, this heuristic obtained the optimal 

schedule for over 75% of the problems, and had an average deviation from 

the optimum schedule of less than 1%.  The heuristic procedure of Campbell, 

et al [19] obtained only 55% of the optimal schedules with an average 

deviation of 1.7% from optimum for the same set of problems; however, 

their heuristic was ten times faster than that of Dannenbring. 

Job Shop 

The job shop scheduling problem is the most general and the most 

difficult of the open shop problems. Here there are no restrictions on 

the requirements associated with each task, so that a task may require 

processing on any subset of processors in any conceivable order. Most 

researchers have assumed that all tasks are nonpreemptive and that the 

criterion is to minimize the maximum flow time.  All optimization approaches 

to this problem seem to be branch and bound procedures (e.g. Ashour, et al 

[2 ], Balas [11], Brooks and White [17], Charlton and Death [21], Fisher 

[44], Florian, et al [46], Giffler and Thompson [53], Greenberg [62], 

Lageweg, et al [78], and Schrage [115]) where 

the various procedures differ primarily with respect to the branching 

rules, the bounding mechanism, and the generation of upper bounds.  Despite 

the preponderance of effort on this problem, the largest problems reported 

to have been solved have less than ten tasks to be scheduled on less than 

ten processors.  Indeed, while Lageweg, et al [78] report solving a diffi- 

cult six task, six processor problem within a few seconds, they (and 
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presumably anyone else) are unable to solve a ten task, ten processor 

problem within five minutes of cpu time on a Control Data Cyber 73-28. 

There have been two distinct heuristic approaches to the deterministic, 

static job shop scheduling problem.  The first is a construction approach 

(e.g. Jeremiah, et al [73], Gere [51]) in which a feasible schedule is 

constructed by scheduling all tasks as early as possible; conflicts arising 

from more than one task being ready for processing at a particular station, 

are resolved by a specified dispatching rule such as selecting that 

operation with the shortest processing time or with the most operations 

remaining.  The second approach is random sampling (e.g. Giffler, et al 

[54]), where a sample of feasible schedules are generated with the best 

schedule being chosen.  The schedules are generated by construction with 

conflicts being resolved randomly.  A similar approach has been taken by 

Heller [67] for the flow shop problem. 

A wide body of research exists for the dynamic job shop problem.  The 

primary effort has consisted of simulation studies of particular job shop 

settings in which a variety of local dispatching rules are compared on a 

set of criteria.  It is beyond the scope of this paper to review this work. 

The reader is referred to the book by Conway, Maxwell, and Miller [25], 

and to the review papers of Moore and Wilson [99], Day and Hottenstein [29], 

and Panwalker and Iskander [106]. 

3.2 Closed Shop Problem 

The closed shop scheduling problem is to find a production schedule 

to satisfy some given requirements at minimum production cost, where the 

production schedule specifies both the run quantities for a set of items 

and the setup sequences for a set of facilities.  This problem is more 

commonly known as the lot-sizing problem.  The requirements to be met are 
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characterized by specifying for a set of Items the assumed demand process, 

which we take to be deterministic.  The production-related costs, for models 

with deterministic requirements, usually consist of Inventory holding costs, 

fixed setup costs, and variable production costs.  A common distinction 

is made between models that assume demand to be constant over time, and 

models which allow time-varying deterministic demand.  In the latter case, 

production decisions are made for discrete points in time, whereas the 

former allows decisions to be Implemented at any point in the time continuum. 

All of the deteministic closed shop scheduling problems can be formulated 

as mixed integer linear programs; most of the solution procedures that we 

will see, are enumeration procedures which attempt to exploit some special 

structure of these programs. 

One Stage, One Facility 

The lot-sizing problem with one facility has been examined by many 

researchers under a variety of assumptions.  The multi-item problem for 

constant demand with item costs consisting of a setup cost and a linear 

inventory holding cost, is known as the economic lot scheduling problem; 

Elmaghraby [36] provides an excellent review of this problem. A common 

assumption is to restrict attention to base period policies of the form 

(k,,k2,...,k ; T) where k. is integer for 1=1,...,n and n is the number 

of items to be scheduled; the policy is a cyclic policy with a base period 

of length T where item 1 is produced once every k. periods.  A particular 

base period policy (k ,...,k ; T) is feasible if a cyclic production 

schedule can be found such that the production requirements in a given 

period do not exceed the length of the period T.  The most common solution 

procedure (e.g. Doll and Whybark [30], Elmaghraby [36], Madigan [88], 

Stankard and Gupta [129]) is first to find a good candidate policy ignoring 
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production capacity; this candidate policy Is then tested for 

feasibility, and If Infeaslble, modified to obtain a feasible policy. 

The joint replenishment problem Is another version of the one facility 

problem that is closely related to the economic lot scheduling problem. 

Here demand is again assumed to be constant, but now there are economies 

of scale from the joint replenishment of several items; these economies 

of scale are characterized by assuming a major setup cost associated with 

initiating production on the facility, and minor setup costs for switching 

from one item to another. Most researchers (e..g Goyal [57], [58], Nocturne 

[103], Shu [119], and Silver [123]) have focused on finding good base period 

policies (k ,...,k ; T) where now 1/T is the frequency of major setups. 

For both the economic lot scheduling problem and the joint replenishment 

problem. Graves [60] has shown that the determination of the base period 

policy. Ignoring production feasibility, is equivalent to the lot-sizing 

problem for a two-echelon distribution system studied by Graves and 

Schwarz [61 ].  Hence any solution procedure for one problem may be imme- 

diately adapted to the other two problem classes. 

The analogous version of the one facility production scheduling 

problem in which demand is deterministic, but time-varying, is the capa- 

citated version of the well-known lot-sizing problem studied by Wagner 

and Whitin [135]. For a single-item problem with a linear inventory holding 

cost, convex production cost and convex shortage cost, Eppen and Gould [41] 

use a Lagrangean relaxation to develop a forward algorithm for finding the 

optimal schedule.  Florlan and Klein [45] also consider a single-item 

problem, but with constant capacity, and a concave production cost.  They 

give a dynamic programming formulation which requires the solution of 

T(T-l)/2 shortest path subproblems for T being the number of periods in 

the scheduling horizon.  This formulation has been extended and/or 
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generallzed by Jagannathan and Rao [72], Swoveland [131], and Lambrecht 

and Vander Eecken [79].  Baker, et al [ 6 ] present a tree-search solution 

procedure for a similar problem to that of Florian and Klein, but with 

time-varying production capacity; they report extensive computational 

experience on an IBM 370/158 in which a twelve-period problem was solved 

on average in less than 0.25 seconds cpu time, while a 24 period problem 

took up to A.50 seconds cpu time to solve.  Heuristics for single-facility 

constrained lot-sizing problems have been proposed for the single-item 

case by Silver and Dixon [12A] and for the multi-item case by Manne [89], 

Eisenhut [35a],Newson [102], and Van Nunen and Vessels [133]. On a sample 

of over 600 test problems. Silver and Dixon [124] report that their heuristic 

gave the optimal solution in 83% of the cases, and when it did not find 

the optimum, the average cost penalty was only 1.7%. 

One Stage, Parallel Facilities 

The one stage lot-sizing problem on parallel facilities has received 

less attention than its single facility analog. However the reported 

research on this problem seems to be more directly connected with actual 

scheduling problems than that for the single facility problem.  Dorsey, 

et al [31], [32], and Ratliff [109] examine in a series of papers the sche- 

duling problem in which several items are to be produced on a set of 

identical parallel facilities over a finite horizon; demand is time- 

varying and given by period.  The schedule costs may include a convex 

production cost, and linear inventory holding and backorder costs. 

Production is by batches, where an item's batch size is set equal to one 

period of production. With this restriction the problem may be formulated 

as a minimum cost network flow problem for which efficient solution proce- 

dures exist. 
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Love and Vemuganti [85] obtain a similar result in a slightly 

different context.  They also consider the problem of scheduling items on 

identical parallel facilities, but with production requirements being 

specified solely in terms of the minimum number of batches required by 

item for each period.  The objective is to minimize total changeover 

costs where a changeover occurs whenever a facility is switched from 

one item to another.  Love and Vemuganti formulate the problem as an 

integer linear program, and show how it may be transformed into a 

minimum cost network flow problem. 

Both Klingman, et al [76] and Caie, et al [18] consider a single 

stage, parallel facility lot-sizing problem in which item demand is now 

assumed to be constant over a finite horizon.  They both assume each item 

is produced entirely on one machine at regular intervals.  For instance, 

Caie, et al [18] have a sixteen-week scheduling horizon in which the time 

between production runs for any item is restricted to one week, two weeks, 

four weeks, or eight weeks.  The scheduling objective is to minimize total 

costs, consisting of setup costs, inventory holding costs, and storage costs. 

The problem is modeled as an integer linear program with decision variables 

denoting for each item both the machine to which it is assigned, and the 

item's production frequency.  The program solution does not sequence the 

items on the parallel machines, but rather provides schedule for machine 

loading.  The integer linear program is solved by a branch and bound proce- 

dure, in which bounds are generated from a subgradient optimization of a 

Lagrangean relaxation of the program. 

Multistage Systems 

The multistage lot-sizing problem is often characterized by the 

network describing the processing steps for each item.  The counterpart 
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of the flow shop for the open shop problem Is the serial system for the 

closed shop problem.  Here, the item requires several processing stages 

where the stages are strictly ordered.  The lot-sizing problem is to find 

a feasible production schedule that meets the demand requirements at 

minimum total cost where there may be an inventory holding and production 

cost at each stage. 

For the serial-system lot-sizing problem with uncapacitated stages, 

concave production and holding costs, and time-varying demand, Zangwill [137] 

shows that the optimal solution is contained in the set of extreme flows of 

a single-source network, and gives a dynamic programming procedure for 

calculating the optimal policies.  Love [86] also considers the serial- 

system problem and presents an alternative dynamic programming algorithm 

which exploits the nested property of the solution.  The amount of compu- 

tation for both procedures is bounded by a polynomial in the number of 

stages and the number of time periods.  Lambrecht and Vander Eecken [80] 

examine a single-item serial system with time-varying demand for which the 

last processing stage is capacitated. They characterize the optimal solution 

in terms of extreme network flows and propose a decomposition solution 

procedure in which the problem is separated between the capacitated stage 

and the earlier uncapacitated stages.  The solution procedure is to enumerate 

all extreme point schedules for the capacitated stage, and then use 

Zangwill's algorithm for scheduling the uncapacitated stages. 

The analog to the general job shop problem would seem to be the lot- 

sizing problem for an assembly network. Here the production of an item 

is characterized by a directed, connected graph where each node has at 

most one successor; each node corresponds to a component or subassembly 

of the item, while the arcs denote how the item is assembled.  The serial 
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system is a special case. 

Veinott [134] and Crowston and Wagner [26] formulate the lot-sizing 

problem for an uncapacitated assembly network with time-varying demand, 

concave production costs and linear inventory holding costs, as a dynamic 

program by exploiting an extreme point characterization of the optimal solu- 

tion. However, these algorithms are quite complex, with the amount of 

computation increasing exponentially with the number of periods in the 

scheduling horizon.  A variety of single-pass heuristics (e.g. McLaren [91], 

McLaren and Whybark [92], Biggs, et al [14], Blackburn and Millen [15]) 

have been proposed for this problem.  These heuristics decompose the assem- 

bly network into echelons so that a production schedule may be generated 

by solving sequentially a series of single-stage lot-sizing problems. 

Graves [59] presents and tests a multipass heuristic in which a schedule, 

constructed by a single-pass procedure, is revised iteratively based on 

local shadov-price information.  On a series of 250 test problems, each 

with five stages, the multipass heuristic obtained the optimal solution in 

over 90% of the cases, with the average percentage cost deviation being 

less than 0.5% from optimum. 

For the lot-sizing problem for assembly systems with constant demand 

over an infinite horizon, Crowston, et al [27] show that an optimal scheduling 

policy has stationary lot sizes such that each stage's lot size is an 

integer multiple of the lot size for the unique successor of that stage. 

This characterization of the optimal policy form is then used by Schwarz 

and Schrage [118] to formulate the lot-sizing problem as an Integer program 

which is solved by branch and bound.  Schwarz and Schrage [118] also 

suggest a "system myopic" heuristic procedure based on the optimal solution 

procedure of Schwarz [117] for the lot-sizing problem for a two-stage serial 
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system; on a series of 3000 small test problems the heuristic gave the 

optimal policy in over half the cases, and had an average cost error of 

less than 5%. 
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4.  Observations on Practice 

The previous section has reviewed the current theoretical work on the 

classical production scheduling problems.  As we have seen, there have 

been many significant advances in production scheduling theory, yet there 

are still many unsolved problems with opportunities for Improvements. 

Unfortunately, it is not so easy to review and summarize production 

scheduling practice. Actual scheduling environments are somewhat 

Illusive to define rigidly and consequently very difficult to classify; 

Indeed, most production schedulers will claim, with some justification, 

that their scheduling setting is not only unique, but sufficiently differ- 

ent from any other setting to require a problem-specific solution. 

In addition to the problem diversity, practitioners have less incentive 

than theoreticians to report upon their work in production scheduling. 

This is due to the perceived limited generality 

and to the proprietary nature of their work.  Hence a 

review of production scheduling practice is not attempted here; rather, 

we offer observations as to the state of the practice of production 

scheduling.  The Intent of these observations is not to give a definitive 

characterization of scheduling practice, but rather to establish a 

perspective with which to contrast scheduling theory. 

The first observation is the predominance of purely manual scheduling 

systems, especially in relatively simple production environments involving 

only a few processing steps. These systems rely primarily on the expertise 

of a few experienced schedulers who construct, revise, and maintain the 

production schedule using no more than a few graphical aids such as a 

Gantt chart.  To an observer, at least. It is often not clear how exactly 

a schedule is constructed nor how alternative schedules are compared or 
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evaluated.  The schedule evaluation seems to be qualitative and to depend 

upon several criteria.  The dominant schedule criterion is often schedule 

feasibility, although many other criteria such as schedule flexibility 

may be important.  Nevertheless, such systems seem to work in that the 

generated schedules are viewed as being quite satisfactory.  This, 

however, is difficult to ascertain due to the qualitative nature of the 

criteria. 

Many complex multistage production environments have implemented 

for their production scheduling either shop floor control systems or 

material requirements planning (MRP) systems or both (e.g. Orlicky [105]). 

These systems are essentially logical systems, which given today's computer 

power, are able to perform both detailed bookkeeping and extrapolation functions. 

These systems do not inherently make scheduling decisions; they have no 

mechanisms for considering the standard tradeoffs associated with scheduling 

decisions.  Rather, these systems provide better and more current informa- 

tion to the production controllers so that they may make the appropriate 

task-sequencing and item lot-sizing decisions.  It is common for the 

production controllers to defer these decision-making responsibilities by 

selecting a scheduling algorithm to be built into the information system. 

In the case of the  shop floor control systems, this corresponds to 

selecting a local dispatch rule for sequencing tasks waiting at each 

production processor; common dispatch rules are to sequence the tasks 

according to expected processing times, or slack times or the ratios 

of the tasks' remaining processing time to the slack time.  For a material 

requirements planning system, a lot-sizing procedure must be chosen. 

A task's slack time is the difference between the time remaining until 
the desired completion time and the remaining processing time. 
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Typically, the system will employ a single-stage, uncapacitated lot-sizing 

procedure which is used to schedule sequentially the production facilities. 

Examples of common lot-sizing procedures are given by Berry [13] and 

Silver and Meal [125]. It should be noted that these procedures ignore 

production capacities, and hence cannot guarantee production feasibility. 

Consequently, the schedule generated from these systems may need to be 

manually adjusted. 

Both material requirements planning systems and shop floor control 

systems have been widely implemented, and have been credited with producing 

significant cost savings and performance improvements.  Indeed, these 

systems seem to have revolutionized how a production shop is run.  It is 

not clear, however, as to how much of the improvements are attributable 

to having better information compared with using various sequencing or 

lot-sizing procedures. 

The above observations suggest that the current operations research 

techniques for scheduling may be either mismatched, inadequate, or not 

needed for many production settings.  This is only partially true. We 

are beginning to see more scheduling implementations which rely upon 

operations research tools to examine tradeoffs and assure schedule 

feasibility.  In particular, this seems to be true in single-stage, 

parallel-facility production shops. Here, the scheduling problem may be 

formulated as a mathematical programming problem, which often is tractable 

as a result of its size and structure.  Examples of such applications have 

been reported by Geoffrion and Graves [52], Love and Vemuganti [85], 

Caie, et al [18], and Ferreira and Hodgson [42]. 

A slightly different observation applies to settings in which a 

formal aggregate production planning procedure exists. Here the scheduling 
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problem may be sufficiently constrained by the aggregate plan so that 

It reduces essentially to a disaggregation scheme in which some secondary 

criterion is optimized subject to satisfying the aggregate plan.  Common 

disaggregation rules are to equalize the run-out time across items or to 

minimize the expected shortage cost for the immediate period.  Illustra- 

tions of such applications are given by Holt, et al [67a], Hax and Meal 

[65], Meal [96], and Blake [16]. 

In summary, there is anything but a one-to-one correspondence between 

scheduling theory and practice.  For complex multistage production settings, 

the theory is not sufficiently developed to be immediately applicable. 

Furthermore, some of the scheduling theory is mismatched to the needs of 

the production scheduler. Nevertheless, as noted, there are encouraging 

signs for certain production settings in which current operations research 

methodology has proved useful.  Clearly, research opportunities exist 

for remedying some of the discrepancies between the theory and the practice, 

and for expanding upon the existing successes with applying scheduling 

theory.  Some of these opportunities are discussed in the next section. 
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5.  Future Directions 

We have seen that there is a gap between production scheduling theory 

and practice.  Future research efforts must be addressed so as to reduce 

these differences. Much of the previous research effort has been spent 

on developing more powerful algorithms and/or more effective heuristics 

for the standard production scheduling problems.  These efforts clearly 

need to be continued; the development of better algorithms and heuristics 

is essential if scheduling theory is to continue to improve scheduling 

practice. However, there are other research directions requiring more 

attention, which may have as great an impact on scheduling practice. 

There is a great need, not only for better scheduling algorithms, but 

both for more realistic models of the scheduling setting and for increased 

understanding of the dynamics inherent in the scheduling environment. 

Six areas for future research are suggested below. 

A. Diagnostics:  There is a need to be able to diagnose and 

evaluate an operating production scheduling system to determine 

whether the system is effective and whether the system can be 

improved.  The diagnostic would be the first step in the 

analysis and revamping of a scheduling system.  The diagnostic 

should be simple, accurate, and suggestive for the next, more- 

detailed step in the analysis.  No general diagnostics seem to 

exist for scheduling systems; however, some preliminary work 

illustrating the use of diagnostics for a production planning 

system has been done by Hax, et al [66]. 

B. Scheduling Robustness:  A frequent comment heard in many 

scheduling shops is that there is no scheduling problem but 
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rather a rescheduling problem.  It may be quite easy to 

construct a schedule; what is difficult is the constant 

schedule revision required by the dynamic environment.  Hence, 

it is important to understand how to implement a schedule when 

shop conditions are uncertain.  In particular, a need exists for 

understanding schedule robustness.  We desire scheduling methods 

which either explicitly reflect the uncertain nature of the 

available information or give some guarantee as to the insensi- 

tivity of the schedule to future information. 

In addition to the wide recognition of the need for schedule 

robustness, there is some very encouraging work in this area. 

One line of research is to characterize planning horizons for 

deterministic scheduling models, where a planning horizon 

establishes the insensitivity of the current scheduling 

decisions to future information beyond the horizon.  Wagner 

and Whitin [135] have given the best-known such results for the 

uncapacitated, single-stage lot-sizing problem; Zabel [136] and 

Lundin and Morton [87] provide important extensions to this 

work. Morton [100] has also found conditions for determining 

planning horizons for a class of single-stage, convex-cost 

scheduling problems, extending the earlier work of Modigliani 

and Hohn [97], and Lieber [83]. The need exists for similar 

planning horizon results for a wider class of production scheduling 

problems. 

A related line of research on scheduling robustness is the 

examination of the effect of the length of the scheduling 

horizon. Most scheduling models attempt to optimize the 
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schedule with respect to a specified finite horizon, despite 

the fact that the schedule is to be Implemented in a setting 

which may operate indefinitely.  Typically, only the model 

decisions for the immediate period are implemented; in the 

next period the schedule is reoptimized based on revised and 

additional information, and again only the immediate period's 

decisions are used.  In this fashion the finite-horizon scheduling 

model is used to generate a "rolling" schedule.  Some interesting 

work has been performed on studying rolling schedules for 

two relatively simple scheduling models.  Baker [4] presents 

an experimental study in which the effectiveness of rolling 

schedules produced for the uncapacitated, single-stage lot- 

sizing model, is examined.  He finds that over a wide range of 

conditions, rolling schedules performed very well with system 

costs usually being within 10% of costs for an optimal schedule. 

Baker and Peterson [ 8] develop an analytical model for evaluating 

rolling schedules generated by a single-stage production model 

with quadratic production and inventory costs.  They also find 

that under reasonable conditions such schedules are quite robust. 

A third topic of research is concerned with system "nervousness" 

created by the dynamic scheduling environment.  System nervousness 

is a consequence of the rolling schedule procedure in that 

schedule plans for future periods are repeatedly being changed; 

this instability can be quite costly if the schedule is being 

used as a basis for manpower planning and procurement decisions. 

Some prelminary work attempting to incorporate these costs into 

the scheduling decision is reported by Carlson, et al [20]. They 
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consider the uncapacitated, single-stage lot-sizing problem and 

propose a simple modification to reflect the cost of schedule 

changes. 

C.  Schedule Interaction:  Production schedules are implemented not 

in isolation, but as part of a total operating system.  For 

instance, scheduling decisions affect and are affected by 

capacity planning decisions, various marketing decisions such 

as product promotions, and transportation/distribution schedules. 

This interaction is not reflected in most scheduling models. 

Some exceptions to this exist, though, especially with respect 

to the interaction of capacity planning with scheduling.  For 

one, Hax and Meal [65] propose a hierarchical framework for a 

batch-processing environment for linking the capacity planning 

decisions with the detailed scheduling decisions.  Shwimer [120] 

and Gelders and Kleindorfer [49],[50] present procedures for 

coupling capacity planning decisions with sequencing decisions 

in a single-facility open shop.  Finally, Maxwell and Muckstadt 

[90} present a model and algorithm for coordinating production 

decisions with transportation decisions, where the production 

decisions involve both capacity planning and scheduling decisions. 

The above models are important in their recognition of the 

interaction between the scheduling decision and other decisions; 

still more effort is needed, though, to incorporate fully this 

interaction with the present scheduling models. 

D. Value of Information:  Given the predominance of material require- 

ments planning systems and shop floor control systems, the 
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questlon arises as to how valuable is the information from such 

systems for generating good schedules.  Since both systems are 

essentially very elaborate information systems, we desire to 

understand the tradeoff between increased system costs for 

obtaining and maintaining accurate information versus the 

cost savings from improved schedules from these systems; indeed, 

research is needed for determining how elaborate such systems 

need be, and at what point is there a net negative return from 

more detailed information.  There seems to be very little work 

on these questions. 

E.  Specialized Scheduling Functions:  Whereas the primary focus of 

this review of production scheduling has been on sequencing and 

lot-sizing decisions, the scheduling function certainly encompasses 

other decisions which may be worthy of study.  In particular, 

important questions exist with regard to the expediting of 

"hot" tasks and the releasing of new tasks to the shop floor. 

Expediting is a common practice in many control systems; 

however, its consequences do not seem to be well understood. 

When a task falls behind schedule for whatever reason, then 

depending upon the essentiality of the task, special efforts 

may be taken to make up lost time so as to meet its schedule 

as closely as possible.  These special efforts inevitably cause 

a disruption in the shop's plans, which may take other tasks 

off-schedule which may lead to further expediting.  Clearly 

a snowballing effect is possible.  The need exists to increase 

our knowledge of how expediting can be done so as to achieve 

the best overall schedule performance. 
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Another specialized function is the releasing of tasks to 

the shop floor, especially for an open shop.  Here for a given 

set of tasks, the desired objective may be to release the 

tasks to maximize facility utilization with the minimum amount 

of work-in-process inventory.  Ideally, tasks are released 

so that high facility utilization is obtained, yet no tasks 

ever wait at any processing facility.  Again there seems to be 

very little work dealing with this function. 

F.  Scheduling of Computerized Manufacturing Systems:  Computerized 

manufacturing systems seem to be the wave of the future, espe- 

cially in batch manufacturing.  These systems are highly 

automated and consist of computer-controlled machining stations 

linked together by an automated material handling system. 

These systems are very complex and offer the potential for 

high productivity due to the systems' automation and flexibility. 

The scheduling of these systems would seem to be particular in 

that the scheduling system must operate in real time and need 

reflect both the manufacturing system's flexibility and inflexi- 

bility.  System flexibility results from the generality and adapt- 

ability inherent in the machining stations; this flexibility 

creates many alternative routing possibilities for most tasks. 

The automated material handling system typically limits system 

flexibility as a result of the finite capacity of both the 

transport system between machining centers and the storage buffers 

at machining centers.  Some preliminary work on scheduling these 

systems has been done by Stecke and Solberg [130]; this work needs 
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to be extended and expanded so that the full potential of computer- 

ized manufacturing systems can be obtained. 

The author wishes to acknowledge the helpful comments of Professor 

Gabriel Bitran and Dr. Elizabeth A. Haas on an earlier version of this 

paper. 
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